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Material lines and surfaces transported in a random velocity field undergo bending 
and stretching. In  this paper we investigate the time evolution of curvature in line 
and surface elements both analytically and by numerical simulation for a simple 
model turbulence. Our analysis is close to  that of Pope (1988) for the evolution of 
curvature in surface elements. We show that the equation governing the evolution 
of curvature in a line element is very similar to that governing the evolution of the 
principal curvature in a surface patch. We investigate the circumstances in which the 
effect of straining fluctuations is to cause the exponential rate of growth of curvature 
discovered by Pope et al. (1989). Our simulation confirms that the presence of helicity 
in the turbulent flow results in the development of a non-vanishing mean torsion in 
a line element. The results of the simulation also suggest that the generation of 
curvature tends to occur in regions different from those associated with rapid 
stretching. The generation of torsion, however, is found not to be correlated with 
either bending or stretching. 

1. Introduction 
In  a previous paper (Drummond & Munch 1990) we analysed the stretching of line 

and surface elements in turbulent flows. We were able to demonstrate that the mean 
length or surface area and its higher statistical moments grow exponentially after 
some initial period of time and that higher statistical moments of the length or 
surface area grow faster than lower moments. Furthermore we constructed a 
numerical model illustrating the importance of the time-reversal invariance of the 
turbulent flow and its breakdown, for the relationship of between the stretching of 
line and surface elements. In  this paper we examine both analytically and by 
numerical experiment the development of curvature in line and surface elements and 
how the evolution of curvature and torsion is related to the stretching of a line or 
surface element transported in a turbulent velocity field. We also examine the 
appearance of torsion and the manner in which it responds to the presence of helicity 
in the turbulent flow. In  the numerical simulations we use a kinematical turbulence 
model which is generated as a sum of Fourier components based on the ideas of 
Kraichnan (1970) and Drummond, Duane & Horgan (1984). Although this is not a 
particularly realistic model of a turbulent velocity field it is very useful for 
illustrating some of the important features of the problems related to the 
development of curvature and torsion in turbulent flows. 

In $2 we set out the differential equations governing the time development of 
various quantities of interest, and in $ 3  we derive equations for the time development 
of the curvature of line and surface elements. We indicate the structure of our 
velocity field in $4 and the numerical results on the development of curvature for 
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both line and surface elements are presented in $5.  In $6 we briefly discuss the 
evolution of torsion of a line element in both helical and non-helical flows. I n  $7 we 
show some of the correlation functions between the curvature, stretching and the 
torsion. Section 8 concludes. 

2. Time development of line and surface elements 
In  a recent paper Pope (1988) has set out an approach to computing the properties 

of surface elements. Our investigation is essentially along the same lines but deals 
also with line elements. For completeness and clarity we set out our version of the 
relevant equations below. 

A curve in space at time t may be written in the parametric form 

r = r(A, t ) .  ( 1 )  
At time t = 0, we may give the parameter A the interpretation of the distance along 
the curve. The line element vector is I where 

A point carried by the fluid flow satisfies 

where u(r,t)  is the velocity field. 
The equation for the line element I is 

where 

I ,  = Kjl*’ 

a w --ui. 
if - axj 

It has the formal solution 
l i ( t )  = U,(t)Zj(O) 

where the matrix U(t) satisfies the differential equation 

O(t) = W(t) U(t) 
and the boundary condition U(0) = I. 

We shall also be interested in the higher-order quantities 

and 

(7) 

(9) 

which are needed in order to  compute curvature and torsion. They obey the 
equations 

and 

where 

and Ui . 
K j k m  = axj axk ax, 
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If we denote the length of I by ( then 

a (= -  
ah ‘7 

where s is the distance measured along the curve at time t .  We have 

The unit tangent vector is 

53 1 

(14) 

We also introduce a unit normal n and a bi-normal m = t A n. The three orthogonal 
unit vectors satisfy the Frenet formulae 

where K is the curvature and T the torsion. 
It is easy to check that 

= (-“(ai - (-21i 1, Uj), 

so that, in magnitude, K = (-311 A al. 

We have also 

which yields the result 

a 
as T = t A ns-n, 

I A a - b  
( I  A a) , ’  

7=- 

To investigate the properties of line elements our procedure is to generate an 
example of the turbulent velocity field, choose appropriate initial data for r ,  I ,  a, and 
b and integrate numerically the above differential equations computing E ,  K and T a t  
each stage. 

Surfaces can be treated similarly. They require two parameters, 

r = r(Al, A,, t ) .  
This leads to two line elements 

a 
1, = - r ,  

aha 

where u = 1,2. Each I ,  evolves according to (4) but from different initial data. The 
unit normal to the surface is N where 

1, A I ,  = A N ,  (24) 

and A is the area of the surface element spanned by I ,  and I, .  
The quantities of interest are the principal extrinsic curvatures of the surface, k, 

and k,, and the Gaussian or intrinsic curvature K = k, k,. To extract these quantities 
we are required to achieve the simultaneous diagonalization of two quadratic forms, 
namely, the metric 

gab = ‘a*’b (25) 
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and 

That is the principal curvatures k satisfy the eigenvalue equation 

( h - k g ) x  = 0, 

where x is a two-dimensional eigenvector. 
In terms of the quadratic forms the Gaussian curvature is defined by 

det h K = -  
det g 

and the principal curvatures are the solutions of the quadratic equation 

k 2 - 2 H k + K  = 0 (29) 

where H = + tr  (g-lh), (30) 

namely, k ,  = H + ( H 2 - K ) i ,  k ,  = H - ( H Z - K ) t .  (31) 

Again our procedure is to integrate the equations for I ,  and I ,  and compute the 
curvatures for each t in appropriately chosen velocity fields. 

3. Time development of curvature 
Pope ( 1988) has discussed an equation governing the time development of extrinsic 

curvature in surfaces. In  fact, a similar equation holds for the time development of 
curvature in line elements also. It is convenient to present here a derivation of both 
cases. 

From (18) we deduce that 

in ,  + Knt  = - 2ylcni +t-z(ui - 6-2, lj a j )  + uj - ij aj - ij u,), (32) 

(33) 
B 

y = f ; *  

i = - 2yK + 62n,(u, - pi, uj) .  (34) 

i = - ( 2 y -  Kj ni n,) K + W j k  n, ti t k .  (35) 

Since Y = Kjtitjl (36) 

where 

Taking the scalar product with n we find 

From (4) and (8) we find 

we see that (34)  involves only components of qj and qjk evaluated in the local frame 
of the line element. It becomes 

i = - ( Z W , ,  ti t j -  W,, n, n j )  K +  Kj, n, t j t k .  (37) 

The corresponding equation for surfaces is obtained by first differentiating (27) 
with respect to time. We normalize so that 

xTgx = 1. (38) 

We have then k g x  = ( h - k g ) x + ( h - k g ) i .  (39) 

k = x T ( h  - k g )  x .  

Using the eigenvalue condition we find 

(40) 
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(44)  

Setting x = (xlrx2) and defining the unit vector corresponding to  the principal 
curvature K to be 

e = xala (45)  

we see that (46)  

This in our notation is the equation derived by Pope (1988).  It can be put in the form 

(47)  

Note the close similarity of form between (37)  and (46) .  The two results are not 
identical, however, since the evolution in time of the two vectors e and N is different 
from that of the vectors t and n. Nevertheless we might expect that, in isotropic 
turbulence where averaging over the orientation of local reference frame is plausible, 
the extrinsic principal curvature of a surface element and the curvature of a line 
element will develop in similar ways on the average. This is particularly clear in the 
short-time behaviour where the isotropy guarantees similar time development for 
the moments of either kind of curvature. 

We have for small times t from (19)  

A 
where f = 2 = - W,N,Nj. 

k = - (2  K5 e, e, + f ) k + &jk Ni ej ek .  

L = - (2& e, e, - w, N,N,) k + K,,N, e, ek. 

K2 W (E+jk W,,,(o) t,, t ,  tk)' t 2 .  

If we exploit the isotropy of the turbulence we find 

( K 2 )  & ( ( w j k ) 2 )  t2' (49)  

(50) 

A similar argument for the principal curvatures of the area element yields 

( k ;  + k i )  = 2k2 x Q( ( V&k)2)  t2.  

It follows that in both cases the root-mean-square curvature increases linearly with 
time. This will continue to  be the case until a point in time is reached comparable 
with the correlation time of the turbulent velocity field. Beyond this point the form 
of the evolution will depend on the details of the turbulent velocity ensemble. 

We can gain some insight into the curvature evolution by following arguments of 
a type suggested by Pope (1988). For example the second term in either (37)  or (46)  
depends on the second derivative along the curve or surface of the normal component 
of the velocity field. It is naturally to be thought of as a bending term. This term 
fluctuates in a random way but is subject to  time-independent statistics with a 
correlation time related to that of the velocity field. Were this the only term to affect 
the curvature the result would be a random walk for either K or k. In  such 
circumstances we would find 

( K ~ )  x (k')  cc t .  (51) 

The first term in either (37)  or (46)  represents the effect straining on curvature. I n  
a previous paper (Drummond & Munch 1990) we found that line or surface elements 
preferentially align themselves in the direction of maximum strain. Because of this 
the average value of the coefficient in the curvature term is negative. Were the 
influence of this coeficient on the statistical time development of the curvature to be 
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dominated by its average value the net effect would be a suppression of curvature. 
We would then expect the competition between the straining term and the bending 
term to lead to a finite asymptotic value for the mean-square curvature. However as 
emphasized by Pope, Yeung & Girimaji (1989) it is in no way obvious that this 
suppression occurs in practice and indeed they found in simulations that the r.m.s. 
curvature increased apparently unboundedly with time. We can examine this 
question in more detail by analysing the Pope equation for curvature development. 

Let us express the curvature equations in the generic form 

y = A ( t )  y + B ( t ) ,  (52) 
where y stands for whichever curvature we are interested in, A ( t )  represents the 
straining term and B(t) represents the bending term. For simplicity of exposition we 
will assume that A ( t )  and B(t)  obey Gaussian statistics. The Gaussian restriction can 
easily be modified with no qualitative change in the conclusions provided we assume 
that the higher cumulant functions die away sufficiently rapidly with increasing 
order. This does have to  be an assumption since otherwise it is possible to construct 
counter-examples to  the results. However, since the velocity ensembles we use in this 
paper are Gaussian at the Eulerian level it is reasonable to assume that the 
corresponding Lagrangian quantities have the required properties. It is also plausible 
that the same is true for real turbulence. We have then 

< A ( t ) )  = -r, 
( B )  = 0, 

( A ( t ) A ( t ’ ) ) ,  = F( t - t ’ ) ,  
( A ( t ) B ( t ’ ) ) ,  = G(t - t ’ ) ,  

where ( A ( t ) A ( t ’ ) ) ,  stands for the cumulant of A ( t ) ,  

(53) 

(A( t )A( t ’ ) ) ,  = < A ( t ) A ( t ’ ) ) - ( A ( t ) )  ( 4 t ’ ) ) t  (54) 
and similarly for the AB correlator. We assume of course that r>  0. 

condition y(t’) = 1 is 
The solution of the homogeneous equation (B(t) = 0) that obeys the boundary 

y ( t ,  t ’ )  = e+(’+,‘+’), (55) 

where 
rt 

$( t ,  t ’) = dt”A(t”). J t ’  

The solution of the complete equation that satisfies y(0) = 0 is 

y ( t )  = [dt’e+(t*t’)B(t’). (57) 

When y ( t )  is sufficiently large we can neglect the bending term relative to the 
straining term. The behaviour of y(t) is then effectively determined by the 
homogeneous equation. The results for the solution of the complete equation can 
readily be inferred from this analysis, 

y ( t )  a e+(t), (58) 

where $(t)  $ ( t , O )  = dt’A(t’). s: 
It follows that the pth moment of y ( t )  is 

(59) 
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where we have made use of the assumed Gaussian nature of the statistics for A(t) .  We 
have 

and 

the asymptotic form being appropriate for large t .  If we introduce an integral 
timescale 7 A  for A-correlations we can set 

C A  = ((A(0))2),7,. It follows that in this limit 

where 
(64) 

(65) 
From this equation we can see that however small C ,  is there exists a value for p for 
which F$) is negative, for which therefore, the pth moment of y ( t )  diverges. This in 
turn suggests that there are always present in the ensemble of y-histories some which 
become arbitrarily large. The degree to which they are important is indicated by the 
lowest moment of y that  diverges. 

It is clear for example that the second moment will diverge if 

<(A(o))2>C 7 A  > r. (66) 

((A(0))2)C7A ' 2f (67) 

Note that even ( y ( t ) )  may diverge if the somewhat more stringent condition 

is satisfied. When however Fzi > 0 we can expect straining on the corresponding 
moment of curvature to be suppressive. For large t the competition between straining 
and bending should then result in a finite asymptotic value for that moment. A 
detailed analysis of the solutions of the inhomogeneous equation does indeed confirm 
this conclusion. 

The final picture is then as follows. For a period less than the velocity field 
correlation time the r.m.s. curvature increases linearly with time t .  Subsequently, if 
there is a range of time for which the bending term dominates, it will increase as ts .  
Finally, depending on the precise values of certain Lagrangian parameters it should 
either settle down to a limiting value or show an exponential divergence with time. 
This latter situation is the one encountered by Pope et al. (1989) who have examined 
this situation closely. The numerical results we present in 55 also support such a 
scenario. 

We conclude this section with a caveat concerning the derivations of (37) and (46). 
In  both cases i t  has been assumed that the vector quantities such as n and e are 
differentiable in time. This is not necessarily so. For n in the case of (37), this 
differentiability may break down when the curvature vanishes. For the principal 
curvatures of the surface element it must be acknowledged that there may exist some 
points where they coincide in value. Under these circumstances the principal vectors 
with which they are associated may change discontinuously. There does not seem to 
be any way of ensuring that this does not happen. One presumes in effect that  such 
discontinuous events are sufficiently rare that they do not vitiate the statistical 
argument. 
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4. The velocity field ensemble 
The turbulence was represented by an incompressible random velocity field which 

was chosen from a Gaussian distribution according to  ideas of Kraichnan (1970), and 
Drummond et al. (1984). In  order to make the calculations a little easier the 
autocorrelation function was chosen to be of a simple kind and was characterized by 
only one length- and timescale. However, the simulation does not depend for its 
success on this choice of spectrum for the turbulence or on the precise number of 
relevant timescales. All the computations were carried out a t  the Rutherford 
Laboratory, Abingdon, and at  the Department of Applied Mathematics and 
Theoretical Physics, Cambridge. At the Rutherford Laboratory we used an AMT- 
DAP 510, a 32x32 array-processor. In Cambridge we used an AMT-DAP 610, a 
64 x 64 array-processor. 

The velocity field u ( x , t )  is generated as a sum of Fourier components, each of 
which is determined by certain parameters distributed according to various 
probability distributions. A typical member of the velocity field ensemble in three- 
dimensional space is then realized by 

u(x,t) = a  ($"cos($")-g" A A kncos(kn-x+ont+q5,J 
N 

n-1 

+(g" cos ($")+f" A R"sin ($")) A knsin(k-x+wnt+qP), (68) 

where kn is distributed uniformly on a sphere with radius k,, wn is chosen from a 
Gaussian distribution P(w)  = (2nwo)-$exp ( -w2 /2w, ) ,  $" is an adjustable helicity 
parameter which we set to $" = $ for all n and $ E [ O , & ~ ] ,  $", gn are distributed 
uniformly and independently over the unit sphere, 4" is distributed uniformly and 
independently between 0 and 2n, a is a normalization factor a = (3/2N)iu,/k,. The 
number N of Fourier components was usually 32, but other values of N have been 
studied for comparison, as well. 

The method of simulation comprises choosing a set of flows and following a number 
of particles distributed in different configurations in the flow in such a way that two 
nearest neighbours are separated by at least two correlation lengths of the flow field 
initially. Array-processors are particularly suited for these calculations as 1024 or 
4096 particles could be followed a t  once. At each time step the particle position and 
the spatial derivatives were calculated and the relevant quantities of interest were 
evaluated. As an integration procedure we used an algorithm based on ideas of 
Burlisch and Stoer (Press et al. 1986). 

The ensemble size used to  evaluate the quantities of interest normally comprised 
a total of 2 x lo5 particles distributed over 200 velocity fields. In a given velocity field 
the particles were initially separated by at least two correlation lengths in order to 
ensure statistical independence. 

5. Numerical results on the time evolution of curvature 
Using the velocity field ensemble as described in the previous section we calculated 

the time evolution of the mean curvature of a line element. In  $3 we have seen that 
we expect the mean curvature to increase linearly with time for small times. For our 
particular model we can evaluate (49) and find 
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FIGURE 1.  The mean-square curvature (2) of a line element and the sum of the two squared 
principal curvatures (k2 + k:) of a surface element versus time for uo k, = wo = 1. 

Furthermore in $3  we have that in the presence of isotropic turbulence the averaged 
equations (37) and (46) should yield similar results. We therefore predict that using 
(50) for short times we have 

2 ( k 2 )  = ( k i + k i )  x&u;k; t2 .  (70) 
In figure 1 we show the numerical results for both ( K ~ )  and ( k 2 ) .  We plot the mean- 
square values of the curvature normalized by u;k:  as a function of the time t 
measured in terms of the correlation time of the velocity field. We see that ( ~ ~ ) i  and 
( k 2 ) i  increase linearly with time t and the coefficient is well established within the 
statistical errors. 

For times large compared to the correlation of the velocity field the evolution of 
the mean curvature depends on the details of the statistics of the turbulence. In $3 
we have seen that for times large compared to the correlation time of the velocity 
field but small compared to the curvature suppression timescale I-' introduced in 
(61) the mean curvature increases proportional to ti .  As I-l is roughly of the order 
of w , / ( u ,  k,)2 we expect this assumption to be particularly valid in the Markovian 
limit where the correlation time of the velocity field is much smaller than the eddy 
circulation time. In figure 2 we plot the numerical results for ( K ~ )  and ( k 2 )  as a 
function of time in terms of the correlation time of the velocity field. For the case 
when the eddy circulation time is 10 times bigger than the correlation time of 
the velocity field we see that both ( K ~ )  and ( k 2 )  increase linearly with time when 
w;' -4 t -4 w,(u, k,)-2. 

Figure 3 shows the time dependence of ( K ~ ) ;  and ( k 2 ) i  for the case u, k, = w,. 
Again we see the linear dependence with time in the early part of the graph. In  the 
later stages of the time development we do not see a levelling off with an approach 
to an asymptotic value. The implication of these results is that for our particular 
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FIGURE 2. The mean-square curvature ( K ' )  of a line element and the sum of the two squared 
principal curvatures ( k : + k i )  of a surface element versus time for uoko = 0.02, w, = 1. 
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FIGURE 3. The r.m.s. curvature ( K ' ) ;  for line elements and ( k : + k : ) i  for surface elements 
versus time for uo k, = w,, = 1. 
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FIGURE 4. The r.m.8. radius of curvature in a line element and (kf+k;)f for surface elements 
versus time for u, k, = w, = 1. 

parameter values the exponent fizi for the second moment of curvature is negative, 
leading to an associated exponential divergence of the r.m.s. curvature with time. 
This is consistent with the results obtained by Pope et al. (1989) in their simulation 
of area element bending based on different models of turbulent flow. We have also 
measured the time development of the r.m.s. radius of curvature. This quantity 
suppresses the influence of very highly curved line elements. The results are shown 
in figure 4 and strongly suggest the emergence of an asymptotic value for the radius 
of curvature. This is consistent with the results obtained by Pope et al. (1989) on the 
distribution function for radius of curvature, which show a fixed distribution with a 
part in the neighbourhood of zero radius gradually filling with time. 

6. Torsion 
From the definition in (2) we see that the torsion is a pseudoscalar quantity and 

its sign depends on the orientation of the three vectors t ,  n and (a/as)n,  namely the 
tangent, normal and the direction of change of the normal along the line element. We 
expect therefore the mean torsion to depend on the presence of helicity in the 
turbulence and to vanish when the helicity is zero. This is analogous to the argument 
appropriate to turbulent plasmas that the a-parameter which controls the 
spontaneous growth of magnetic fields, also a pseudoscalar quantity, acquires a non- 
zero value when helicity is present in the turbulence. For our model we have in 
particular 

(71) 

FLM 225 

= <u,(x, t )  M X ,  t ) ) ,  

= k,sin2$(u,(x,t) u,(x,t)), 
= ui k, sin 2$. 

18 
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FIGURE 5. The mean torsion versus time for uoko = wo = 1 and various values of the helicity 
parameter $. 

Therefore we expect to find that the mean torsion vanishes for y+ = 0. As soon as we 
set II. =I= 0 we induce some handedness into the flow and we expect the joint statistical 
distribution of the three vectors t ,  n and (a/as) n to reflect this fact so that given the 
oriented plane spanned by any two of them the third will tend to lie more on one side 
than the other. Thus when =!= 0 we will find also (7) 9 0. For different values of @ 
we show (7) as a function of the time t in figure 5.  It is striking that (7) appears to  
reach a constant asymptotic value. 

An analysis of a kind similar to  that in $3 for the curvature of a line element is 
possible for the torsion or the squared torsion, as well. This analysis, however, does 
not reveal any simple relationship between, say, the curvature or the stretching and 
the torsion of a line element. In  fact, even for short times the development of torsion 
depends crucially on the initial shape of the line element and the local velocity field 
configuration. To see this, consider (21) : 

1 A a - b  
( I  A a)2'  

7=- 

If the line element contains a large amount of curvature the development of t,orsion 
tends to  be sc,newhat suppressed. If we start with a line element which is rather 
straight we find that almost any amount of torsion can develop in very little time 
owing to  curvature fluctuations. From a dimensional analysis of (21) it is possible to 
argue that the mean-square torsion ( 7 2 )  does not grow exponentially in time for 
times larger than the correlation time of the velocity field. In  figure 6 we plot the 
r.m.s. torsion (79; as a function of time for different helical flows. These results show 
that the r.m.s. torsion grows strongly with time and that helicity has only a slight 
effect on this time development. We arrive then at a picture in which the turbulence 
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Time, w;' 

FIGURE 6. The r.m.8. torsion versus time for uoko = wo = 1. The helicity parameter was chosen 
to be $ = O  and $=in. 

generates increasing amounts of torsion with or without helicity. The balance 
between left or right torsion, however, is controlled by the helicity. 

7. Numerical results for stretching, curvature, and torsion correlations 
An interesting question is the impact of stretching on curvature. Intuitively, one 

would expect that in regions where the line elements are stretched the creation of 
curvature is somewhat suppressed, whereas in regions where we do not have much 
stretching going on the line elements get bent owing to the random fluctuations of 
the stress tensors. In  order to test this hypothesis we would like to know whether the 
two quantities &/[ and k / K  are correlated, where &/t contains the information of how 
fast a line element is being stretched at time t normalized by its length and k / K  

contains the information of how fast a line element changes its curvature relative to 
its curvature. According to the above hypothesis we expect the correlation of these 
two quantities to be negative. In figure 7 we plot the correlation coefficient of these 
two quantities as a function of time t .  The correlation coefficient ra,b of two quantities 
a and b is defined as 

The numerical results clearly show a negative correlation coefficient and therefore 
support the hypothesis of stretching regions being different from regions where a lot 
of bending takes place. 

Having established the idea of different regions of our flow as far as the generation 
of stretching and curvature is concerned we would like to find out whether the line 

18-2 
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FIGURE 7. The correlation coefficients rE,i, r,,,, and ~ g / ~ , ~ / ~  versus time. 

elements have a tendency to stay in either region or rather whether they wander 
from one to the other. To extract this sort of information we have to consider the 
correlation of ( and E and similarly K and K .  If the line elements do not have a 
tendency to wander from one region to the other we expect 

rg.6 > 0, (73) 

i.e. long line elements are increasing their length. Similarly, curved line elements 
coincide with an increasing curvature and therefore 

ri.K > 0. (74) 

The numerical results in figure 7 seem to suggest that  situations where line elements 
stay in any of the two regions without wandering are statistically somewhat 
preferred. 

We measured the correlations between the torsion 7 and the squared torsion r2 of 
a line element: as well. All the correlations between the torsion or the squared torsion 
and the stretching and curvature seem to vanish in our model. This suggest,s that  
torsion can be generated equally well a t  any point in the flow. 

8. Conclusions 
We have studied the development of curvature in line and surface elements in a 

manner similar to that of Pope (1988) and Pope et al. (1989). Our results are 
consistent with the conclusions of these investigations. We have shown that the 
equation governing the time evolution of the curvature of a line element has the same 
form as the equations governing the time development of the extrinsic principal 
curvatures of a surface patch. We therefore expect that in the case of isotropic 
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turbulence both the curvature of a line element and the extrinsic principal 
curvatures of a surface element behave similarly. Using a simple model turbulence 
we were able to show this equivalence numerically. Furthermore we confirmed by 
theoretical analysis the possibility of exponential growth of curvature induced by 
fluctuations of the strain tensor that was discovered by Pope et al. (1989). The results 
of our numerical simulation are consistent with this outcome. 

We investigated numerically the dependence of the torsion on time in the 
turbulent flows and demonstrated the response of the mean torsion t,o the presence 
of helicity. The r.m.s. torsion is insensitive to helicity and appears to exhibit power 
law growth in time. 

By measuring some of the correlation functions of the quantities involved we 
demonstrated that there are different regions in the flow where on the one hand the 
generation of curvature is suppressed and line or surface elements predominantly 
increase in length or surface area and, on the other hand, there are regions where 
curvature is generated and the growth of a line or surface element is suppressed. 
Furthermore we were able to  show that line or surface elements have a tendency to 
stay in either region than wander from one to the other. The generation of torsion, 
however, does not correlate with any of these identified regions. 
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